capivara

arXiv GitHub

Capivara: A Spectral-based Segmentation Method for IFU Data Cubes

Capivara implements a spectral-based segmentation method for Integral Field Unit (IFU) data cubes. Designed with astronomers in mind, it facilitates the decomposition of spectral data into regions of similar physical properties, leveraging advanced matrix operations via torch for GPU acceleration.

Installation

Install Capivara from GitHub using the following commands:

install.packages('remotes')
remotes::install_github("RafaelSdeSouza/capivara")
library(capivara)

Usage

Basic Usage: MaNGA Data Cube

This example demonstrates how to use capivara to process an IFU datacube from the MaNGA survey:

require(capivara)
# Read the MaNGA datacube
cube <- "manga-7443-12703-LOGCUBE.fits"

# Apply Capivara segmentation
res <- capivara::segment(cube,Ncomp=20)

# Plot the segmented region
plot <- plot_cluster(res)
print(plot)

Dependencies

References

  1. MaNGA Survey: Bundy, Kevin, et al. “Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory.” The Astrophysical Journal 798.1 (2015): 7. DOI: 10.1088/0004-637X/798/1/7
  2. Capivara Methodology: Souza, Rafael S. de, et al. “Capivara: A Spectral-Based Segmentation Method for IFU Data Cubes.” arXiv preprint (2024). DOI: 10.48550/arXiv.2410.21962
  3. Torch in R: Paszke, Adam, et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” Advances in Neural Information Processing Systems. 2019.

For more information, check the Capivara GitHub webpage.